ISSN 2348 - 8034 Impact Factor- 5.070

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES CHARACTERIZATION OF A CLASS OF MINIMAL RIGHT IDEALS OF LOOPHALF-GROUPOID NEAR-RING OF TRANSFORMATIONS

Ch.Subrahmanyam¹ & G.Koteswara Rao²

¹Dept. of Mathematics, New Horizon College Of Engineering, Bangalore, Karnataka ²Dept. of Computer Science ,Abhinav Institute of Management and Technology, Singarayakonda, Prakasam Dist., A.P

ABSTRACT

The study of near-ring of transformations was initiated by D.Ramakotaiah and G.KoteswaraRao [2]. In their paper they characterized a class of maximal and minimal right ideals. The study of loop-near rings was initiated by D.Ramakotaiah and Santakumari [4]. The study of loop-half-groupoid near rings was initiated by D.Ramakotaiah and PrabhakarRao [3]. In this paper we continue the study of loop-half-groupoid near-rings.

This paper is divided into three sections. In the first section, we present some basic definitions of loop-half-groupoid near-rings and some basic results without proofs. In second section we present some basic results without proofs which are necessary for our main work. In the third section we characterize a class of minimal right ideals of a loop-half-groupoid near-rings of transformations of a loop.

I. INTRODUCTION

For the definitions of half-groupoids, groupoids, loops, sub loops and normal sub loops see [5]. We begin this section with the following.

Definition 1.1

A system $N = (N, +, \cdot, o)$ is called a loop-half-groupoid near-ring provided

(i)N = (N, +, o) is a loop.

(ii) $N = (N, \cdot)$ is a half-groupoid.

(iii) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in N$ for which $a \cdot b, b \cdot c, a \cdot (b \cdot c), (a \cdot b) \cdot c$ are defined in N.

(iv) $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a,b,c \in N$ for which $a \cdot (b+c)$, $a \cdot b$ and $a \cdot c$ are well defined in N

(v) $a \cdot o$ and $o \cdot a \in N$ and $a \cdot o = o \cdot a = o$.

Remark 1.2

For any 'a' belonging to an additive loop, we shall denote the unique left and right inverses of 'a' by a_l and a_r respectively. It can be easily verified that $(a \cdot b)_r = a \cdot b_r$ and $(a \cdot b)_l = a \cdot b_l$ for all $a, b \in N$ for which $a \cdot b, a \cdot b_l$ and $a \cdot b_r$ are defined. We write $a \cdot b$ as .

Example 1.3

Every loop near-ring is a loop-half-groupoid near-ring..

Example 1.4

Let $(G, +, \bar{o})$ be an additive loop where \bar{o} is the additive identity element of G. Let Δ be proper subset of G containing \bar{o} . Define $a \cdot b = b$ for $\bar{o} \neq a \in \Delta$ and $b \in G$. Define $\bar{o} \cdot b = \bar{o}$ and $a \cdot \bar{o} = \bar{o}$ for all $a, b \in G$, then $(G, +, \cdot, \bar{o})$ is a loop-half-groupoid near-ring.

ISSN 2348 - 8034 Impact Factor- 5.070

Definition 1.5

Let $(N, +, \cdot, o)$ be a loop-half-groupoid near-ring and let $(G, +, \bar{o})$ be a loop, then G is called a N-loop provided there exists a mapping $(g, n) \to gn$ of $G \times N$ into G such that $g(n_1 + n_2) = gn_1 + gn_2$ and $g(n_1n_2) = (gn_1)n_2$ for all $n_1, n_2 \in N$ and $g \in G$ for which $n_1 \cdot n_2$ is defined in N.

Definition 1.6

Let N be a loop-half-groupoid near-ring. Let G_1 and G_2 be N-loops. A homomorphism $f: G_1 \to G_2$ is called a N-homomorphism provided $(g_n)f = (gf)n$ for all $g \in G$ and $n \in N$. The kernel of f is called a N-kernel of G_1 .

Definition 1.7

Let N be a loop-half-groupoid near-ring. An N-loop G is said to be an irreducible N-loop if it has no non-trivial N – kernels.

Lemma 1.8

If N is a loop-half-groupoid near-ring then a non-empty subset M of a N-loop is a N-kernel of G iff M is a normal subgroup of G.

Definition 1.9

A non-empty subset L of a loop-half-groupoid near-ring N is called a right ideal of N provided (L, +, o) is a normal sub loop of N and $(l + n_1)n_2 + n_1n_2 \in L$ for all $l \in L, n_1, n_2 \in N$ for which $(l + n_1)n_2, n_1n_2$ are defined.

Definition 1.10

Let N be a loop-half-groupoid near-ring. Let G be an N-loop. An element $g \in G$ is called an N-generator of G or simply a generator of G provided $g^N = G$.

Definition 1.11

If N is a loop-half-groupoid near-ring, then

- (i) An irreducible N -loop with a generator is called an N –loop of type 0.
- (ii) A N-loop of type 0 is called a N-loop of type 1 provided $g^N = G \text{ or } g^N = \{o\}$ for all $g \in G$.
- (iii) A N-loop of type 1 is called a N-loop of type 2 if each non-zero element is a generator.

Definition 1.12

If N is a loop-half-groupoid near-ring, then any right ideal of N is said to be semi large if it has nonzero intersection with any one of the direct summand of N where N is written as a direct sum of right ideals.

II. PRELIMINARIES

In this section we present some basic definitions and basic results without proofs which are needed for our main work. All these definitions and results can be seen in [3].

We begin this section with the following:

Definition 2.1

Let $(G, +, \bar{o})$ be a loop and Δ be a subset of G. A set S of endomorphisms of G is called a Δ -centralizer of G provided:

- (i) The zero endomorphism $\hat{o} \in S$.
- $\phi(iii) \Delta \emptyset \subseteq \Delta \text{ for all } \emptyset \in S.$
- (iv) For \emptyset , $\psi \in S$ and $(\omega)\phi = (\omega)\psi$ for some $\bar{o} \neq \omega \in \Delta \Rightarrow \Phi = \psi$.

ISSN 2348 - 8034 Impact Factor- 5.070

Definition 2.2

Let $(G, +, \bar{o})$ be a loop and Δ be a subset of G and S be Δ -centralizer of G.

A mapping T of G into itself is called a Δ -centralizer of G over S provided $(\omega \phi)T = (\omega T)\phi$ for all $\omega \epsilon \Delta$ and $\phi \epsilon S$.

Remark 2.3

If $\bar{o} \in \Delta$ and T is a Δ -transformation of G over S, then T fixes \bar{o} . We shall denote the set of all Δ -transformations of G over S by $N(S, \Delta)$. It can be verified that for any endomorphism ϕ of G, $(g\phi)_r = g_r\phi$ and $(g\phi)_l = g_l\phi$ for all $g \in G$.

Lemma 2.4

Let $(G, +, \bar{o})$ be a loop and Δ be a subset of G containing \bar{o} and S be Δ -centralizer of G. Then $N(S, \Delta)$ is a loop-half-groupoid near-ring under the usual addition and iteration of mappings.

In general $N(S, \Delta)$ is not a loop-near-ring. We now state two sufficient conditions under which $N(S, \Delta)$ is a loop-near-ring.

Lemma 2.5

 $N(S, \Delta)$ is a loop-near-ring under any one of the following conditions.

- (i) for each T in $N(S, \Delta)$, $\Delta T \subseteq \Delta$.
- (ii) for each $\omega \in G$, $(\omega T)\phi = (\omega \phi)T$ for all T in $N(S, \Delta)$ and ϕ in S.

Throughout this remaining section we assume that G is a loop, Δ a subset of G containing \bar{o} properly and S be Δ -centralizer of G. $N(S, \Delta)$ is the set of all Δ -transformations of G over S and $N(S, \Delta)$ is a loop-half-groupoid nearring.

Lemma 2.6

Let G be loop and Δ a subset of G containing \bar{o} . Let S be Δ -centralizer of G then every non zero element of Δ is a $N(S, \Delta)$ generator of G.

Lemma 2.7

Let G be a loop and S be a set of endomorphisms of G containing \bar{o} such that $S-\hat{o}$ is a group of automorphisms of . Then S is a centralizer of some subset \bar{o} of G containing non zero element of G iff $\bigcup F(\emptyset) \neq G, \emptyset \in S-\hat{o}$, $\emptyset \neq I$, where I is the identity mapping of G and $F(\emptyset) = \{x \in G : x\emptyset = x\}$. If this is the case then G has a $N(S, \Delta)$ generator.

Definition 2.8

Let G be a loop, Δ a subset of G containing \bar{o} and S a Δ -centralizer of G.

Let $\bar{o} \neq \omega_1, \omega_2 \in \Delta$. Then ω_1 and ω_2 are said to be S-equivalent if there exists $\emptyset \in S - \hat{o}$ such that $\omega_1 \emptyset = \omega_2$.

Definition 2.9

The relation "S-equivalent" is an equivalence relation on Δ . If Γ is any subset of G, then we denote the set $\{n\epsilon N(s,\Delta): (\gamma)n = \bar{o} \text{ for all } \gamma\epsilon \Gamma\}$ by $A(\Gamma)$. It can be seen that $A(\Gamma)$ is a loop. If $N(S,\Delta)$ is a loop-near-ring then $A(\Gamma)$ is a $N(S,\Delta)$ -loop.

Lemma2.10

containing ω . In particular if $N(S, \Delta)$ is a loop-near-ring then G is $N(S, \Delta)$ isomorphic to $A(G - \Gamma)$.

Theorem 2.11

If $N(S, \Delta)$ is a loop-near-ring, then G is a $N(S, \Delta)$ - loop of type 'o' if and only if for some S-equivaplence class Γ , $A(G - \Gamma)$ does not contain a non zero nilpotent right ideal of nilpotency 2.

THOMSON REUTERS

ISSN 2348 - 8034 Impact Factor- 5.070

Theorem 2.12

For each proper $N(S, \Delta)$ -kernel G_1 of G and for each $\overline{O} \neq \omega \in \Delta$, $\omega + G_1 \subseteq \Gamma$ where Γ is the S-equivaplence containing ω .

Theorem 2.13

Let G be a loop. Let Δ be a subset of G containig \overline{o} and S be Δ -centralizer of G. If ω is a non zero element of Δ , then there exixts $T \in N(S, \Delta)$ which maps every element of the

S-equivaglence containing ω onto itself and maps every other element onto $\bar{0}$.

III. CHARACTERIZATION OF MINIMAL RIGHT IDEALS

In this section we characterize a class of minimal right ideals and a class of maximal right ideals of a loop-half-groupoid near-ring of Δ -transformations of a loop G over a set of endomorphisms of G

Lemma 3.1

If *H* is any subset of *G*, then the set $A(H) = \{T \in N(S, \Delta) : (h)T = \overline{0} \text{ for all } h \in H \}$ is a $N(S, \Delta)$ -loopoid.

Proof: Clearly A(H) is a subloop of $(N(S, \Delta), +)$. Hence it is a loop.

Let $T' \in N(S, \Delta)$ and let $T \in A(H)$ such that TT' is defined.

For any $h \in H$, $(h)TT' = (hT)T' = (\bar{o})T' = \bar{o} \Rightarrow TT' \in A(H)$

Also for any $T \in A(H)$ and $T_1, T_2 \in N(S, T), T(T_1 + T_2) = TT_1 + TT_2$ and $T(T_1, T_2) = (TT_1)T_2$

Where $T(T_1 + T_2)$, TT_1 , TT_2 , $T(T_1 T_2)$, $(TT_1)T_2$ are defined.

Therefore $A(H) = \{T \in N(S, \Delta): (h)T = \bar{o} \text{ for all } h \in H \} \text{ is a } N(S, \Delta) \text{ -loopoid.}$

Lemma 3.2

If L is a minimal right ideal of $N(S, \Delta)$ such that L is not contained in $A(\Delta)$ then L is $N(S, \Delta)$ – loopoidhomomorphic oG.

Proof: Since $L \not\subset A(\Delta)$, there exists an element $\bar{o} \neq \omega \in \Delta$ such that $\omega L \neq \{\bar{o}\}$. Since ω is a $N(S, \Delta)$ generator of G, we have $G = \omega N(S, \Delta)$. Clearly ωL is a subloop of G. Since G is a normal subgroup of G, we have that G is also a normal subgroup of G.

Let $\omega T_1 \in \omega L$ and $g \in G = \omega N(S, \Delta) \Rightarrow g = \omega T'$ for some $T' \in N(S, \Delta)$. Let $T \in N(S, \Delta)$ Such that $(T_1 + T')T$ and $T'T_T$ are defined.

Now $(\omega T_1 + \omega T')T + \omega T'T_r = \omega[(T_1 + T')T + T'T_r] \epsilon \omega L$. Therefore ωL is a $N(S, \Delta)$ -loopoid kernel of G. Since G is irreducible and $L \neq \{\overline{o}\}$, we have $\omega L = G$. Now define a mapping $\emptyset: L \to G$ by $\emptyset(l) = \omega l$ for all $l \in L$. Clearly \emptyset is $N(s, \Delta)$ -loopoid epimorphism of L onto G. Also clearly ker \emptyset is a right ideal of $N(s, \Delta)$ which is properly contained in L. Since L is a minimal right ideal, we have $\ker \emptyset = \{\widehat{o}\}$ and hence \emptyset is one-one. Hence \emptyset is an $N(s, \Delta)$ -loopoid isomorphism of L onto G.

Theorem 3.3

Let *G* be any loop and $\{\bar{0}\} \neq \Delta \subseteq G$. Let *S* and *S'* be two Δ -centralizers of *G* such that $S \subseteq S'$. Then $N(S, \Delta) = N(S', \Delta)$ if and only if = S'.

Proof: If S = S' then there is nothing to prove.

Conversly suppose that $N(S, \Delta) = N(S', \Delta)$, suppose if possible $S \neq S'$.

Since $S \subseteq S'$, there exists $\emptyset' \in S'$ such that $\emptyset' \in S$, clearly $\emptyset' \neq \hat{o}$.

Let ω be any non zero element of Δ . Let C and C' be respectively S and S' equivalence classes containing ω .

ISSN 2348 - 8034 Impact Factor- 5.070

Now $C = \{\omega\emptyset : \emptyset \in S - \hat{o}\}\ and\ C' = \{\omega\emptyset : \emptyset \in S' - \hat{o}\}.$

We have $\omega \emptyset' \in C'$. Suppose if possible $\omega \emptyset' \in C$. Then there exists $\emptyset \in S - \hat{o}$ such that $\omega \emptyset' = \omega \emptyset$.

Since $S \subseteq S'$, we have $\emptyset \in S'$. Now \emptyset and \emptyset' are elements of $S' - \hat{o}$ such that $\omega \emptyset' = \omega \emptyset$ where $\bar{o} \neq \omega \epsilon \Delta$. By the definition of Δ -centralizer, $\emptyset = \emptyset'$ which is a contradiction.

Therefore $\omega \emptyset' \notin C$. Write $\omega \emptyset' = \omega_1$.

By lemma 2.6 there exists a $T \in N(S, \Delta)$ such that $\omega T = \omega_1$ and T maps every element of G which does not belong to the S – equivalence class C onto \bar{o} . Since $N(S, \Delta) = N(S', \Delta)$, we have $T \in N(S', \Delta)$ and hence $\bar{o} = \omega_1 T = (\omega \emptyset')T = (\omega T)\emptyset'$.

Since \emptyset is an automorphism of G, it follows that $\omega T = \bar{0}$. Therefore $\bar{0} = \omega T = \omega_1 = \omega \emptyset'$.

Again since \emptyset is an automorphism. $\emptyset' = \overline{0}$, which is a contradiction. Therefore S = S'.

Corrolary 3.4

The set of all loop endomorphisms \emptyset of loop G such that $(\omega \emptyset)T = (\omega T)\emptyset$ for all $\omega \in \Delta$, $T \in N(S, \Delta)$ and $\Delta \emptyset \subseteq \Delta$ is S itself.

Proof:

Let $S' = \{\emptyset : \emptyset \text{ is a loop endomorphism of } G \text{ such that } \Delta\emptyset \subseteq \Delta \text{ and } (\omega\emptyset)T = (\omega T)\emptyset \text{ for all } \omega \in \Delta, T \in N(S, \Delta)\}.$

Now we shall prove that S' is a Δ -centralizer of G.

Clearly $\hat{o} \in S'$ and $\Delta \emptyset \subseteq \Delta$ for all $\emptyset \in S - \hat{o}$.

Let \emptyset be a non zero element of S'. Since G is irreducible, the kernel of \emptyset must be either G or $\{\bar{0}\}$. Since $\emptyset \neq \hat{0}$ it follows that $\ker \emptyset = \{\bar{0}\}$ and hence \emptyset is one-one.

Let $g \in G$ and $\omega \emptyset \neq \omega \epsilon \Delta$. Now $\omega \emptyset \epsilon \Delta$ and $\emptyset \neq \bar{0}$.

Hence by lemma 2.6, $\omega \emptyset$ is a $N(S, \Delta)$ -generator of G. Therefore, there exists a

 $T \in N(S, \Delta)$ such that $(\omega \emptyset)T = g$. Put $g_1 = \omega T$. Now $g_1 \in G$ and $g_1 \emptyset = (\omega T)\emptyset = (\omega \emptyset)T = g$.

Hence \emptyset is onto . Therefore \emptyset is an automorphism of G.

Finally suppose that $\omega\emptyset = \omega\Psi$, where $\emptyset, \Psi \in S - \hat{o}$ and $\bar{o} \neq \omega \epsilon \Delta$.

Let $g \in G$. Then there exists a $T \in N(S, \Delta)$ such that $\omega T = g$.

Now $g\emptyset = (\omega T)\emptyset = (\omega \emptyset)T = (\omega \Psi)T = (\omega T)\Psi = g\Psi$. This is true for all $g \in G$.

Hence $\emptyset = \Psi$.

Therefore S' is a Δ -centralizer of G.

By the definition of S', $S \subseteq S'$. It can be easily verified that $N(S, \Delta) = N(S', \Delta)$.

Therefore by the above theorem 3.3 we have S = S'.

Lemma 3.5

Let C be an S-equivalence class on Δ . Then A(G - C) is a $N(S, \Delta)$ -loopoid of type 0 and hence it is a minimal right ideal of $N(S, \Delta)$.

Proof:

Clearly by lemma 3.1, A(G - C) is a $N(S, \Delta)$ -loopoid. Let $g \in G$.

By theorem 2.13 there exists a $T \in N(S, \Delta)$ such that gT = g and $g'T = \bar{g}$ for all $g' \in G - C \Rightarrow T \in A(G - C)$.

Now let $g_1 \in C$.

Then $g_1 = g\emptyset$ for some $\emptyset \in S - \hat{o} \Rightarrow g_1T = (g\emptyset)T = (gT)\emptyset = g\emptyset = g_1$.

Hence $g_1T = g_1$ for some $g_1 \in C$. Now we shall show that $TN(S, \Delta) = A(G - C)$ where $TN(S, \Delta) = \{TT_1 = T_1 \in N(S, \Delta) \text{ and } TT_1 \text{ is defiHence ned}\}.$

Let $TT_1 \in TN(S, \Delta)$.

For any $g \in G - C$, $(g)TT_1 = (gT)T_1 = (\bar{o})T_1 = \bar{o}$.

Hence $TT_1 \in A(G - C)$.

Conversly suppose that $T_1 \in A(G - C)$.

Define $T_2: G \to G$ by $(g)T_2 = (g)T_1$ if $g \in C$ and \bar{o} if $g \in G - C$.

Now it can be easily verified that $T_2 \in N(S, \Delta)$ and $T_1 = TT_2 \Rightarrow T_1 \in TN(S, \Delta)$.

Therefore $TN(S, \Delta) = A(G - C)$.

ISSN 2348 - 8034 Impact Factor- 5.070

Put K = A(G - C). Now K is a right ideal of $N(S, \Delta)$.

Further for any $g \in C$, $gK = gA(G - C) = gTN(S, \Delta) = gN(S, \Delta) = G$.

For some $g \in C$. Define $\emptyset g: K \to gK$ by $(k)\emptyset g = gk$ for any $k \in K$.

Clearly $\emptyset g$ is a $N(S, \Delta)$ -loopoidepimorphism of K onto G. Since S-equivalent elements have equal annihilators, we have A(G) = A(C).

Therefore $\ker \emptyset g = K \cap A(g) = A(G - C) \cap A(C) = A(G) = \{\hat{o}\}\$

Therefore $\emptyset g$ is an $N(S, \Delta)$ -loopoid isomorphism of K onto G. Since G is a $N(S, \Delta)$ -loopoid

of type 0, K = A(G - C) is also a $N(S, \Delta)$ -loopoid of type 0 and hence A(G - C) is a minimal right ideal of $N(S, \Delta)$.

Theorem 3.6

Let G be a N-loopoid of type 0. If g is a N -generator of G, then A(g) is a maximal right ideal of N. Proof:

Since g is a N -generator of G, we have gN = G.

Define a mapping $\emptyset: N^+ \to G$ by $\emptyset(x) = gx$ for all $x \in N^+$.

For any $x_1, x_2 \in N^+$, $\emptyset(x_1 + x_2) = g(x_1 + x_2) = gx_1 + gx_2 = \emptyset(x_1) + \emptyset(x_2)$.

For any $x \in N^+$, $n \in N$, $\emptyset(xn) = g(xn) = (gx)n = \emptyset(x)n$.

Let $g_1 \in G \to g_1 = gx$ for some $x \in N$. Now $x \in N$ and $\emptyset(x) = gx$. Hence $x \in \ker \emptyset$ iff $\emptyset(x) = \overline{0}$ iff $gx = \overline{0}$ iff $x \in A(g)$.

Therefore, \emptyset is a N-loopoid homomorphism of N^+ onto G with Kernel A(g). Hence $N^+/A(G)$ is a N-loopoid isomorphic to G. Since A(g) is the kernel of N-loopoid homomorphism, it is a right ideal of N. Since G is irreducible, we have $N^+/A(G)$ is also irreducible and hence A(g) is a maximal right ideal of N.

Lemma 3.7

Let C be an S-equivalence class on Δ . Then A(C) is a maximal right ideal of $N(S, \Delta)$.

Proof:

By the above theorem 3.6, A(G) is a maximal right ideal of $N(S, \Delta)$ for any $g \in \Delta$. Since all the elements of an S-equivalence class have the same annihilators, we have A(C) = A(g) for some $g \in C$. Hence A(C) is a maximal right ideal of $N(S, \Delta)$. Hence the result.

Lemma 3.8

Let C be an S-equivalence class. Then $N(S, \Delta)$ is a direct sum of A(C) and A(G - C).

Proof:

WE have $A(G - C) \cap A(C) = A(G) = \{\hat{o}\}$. Since A(G - C) is a minimal right ideal, it is a non zero right ideal of $N(S, \Delta)$ and hence $A(G - C) \nsubseteq A(C)$. Since A(C) is a maximal right ideal, we have $A(C) + A(G - C) = N(S, \Delta)$. Hence $N(S, \Delta)$ is a direct sum of A(C) and A(G - C).

Lemma 3.9

If L is a minimal right ideal of $N(S, \Delta)$ such that L is not contained in $A(\Delta)$ and L is a semilarge, then L = A(G - C) where C is an S-equivalence class of Δ .

Proof:

Suppose L is a minimal right ideal of $N(S, \Delta)$ such that L is not contained in $A(\Delta)$ and L is a semilarge.

Write $G_1 = \{g \in \Delta \colon gL \neq \{\overline{0}\}\}\$. Since L is not contained in $A(\Delta)$ we have at least one $g \in \Delta$ such that $gL \neq \{\overline{0}\}$, therefore $G_1 \neq \emptyset$.

Let $g \in G_1 \Rightarrow gL \neq \{\overline{0}\}.$

Now for all $\emptyset \in S - \hat{o}$, $(g\emptyset)L = (gL)\emptyset \neq \hat{o}$, hence $(g)\emptyset \in G_1$.

Therefore the S-equivalence class C containing g is contained in G_1 . Thus G_1 contains an S-equivalence class C on Δ . Assume that $\neq A(G-C)$. Since L and A(G-C) are minimal right ideals, we have $L \cap A(G-C) = \{\hat{o}\}$. Since

[ICESTM-2018] ISSN 2348 - 8034

Impact Factor- 5.070

 $CL \neq \{\overline{o}\}\$, we have $L \nsubseteq A(C)$. Since L is a minimal right ideal, it follows that $L \cap A(C) = \{\widehat{o}\}\$. By Lemma 3.7 we have A(C) is a maximal right ideal $\Rightarrow L + A(C) = N(S, \Delta)$ where the sum is direct.

By Lemma 3.8 we have $A(C)+A(G-C)=N(S,\Delta)$ where the sum is direct.

Since L is semi large either $L \cap A(G - C) \neq \{\hat{o}\}$ or $L \cap A(C) \neq \{\hat{o}\}$

But we have $L \cap A(G - C) = {\hat{o}}$ and $L \cap A(C) = {\hat{o}}$ which is a contradiction.

Therefore L = A(G - C).

Theorem 3.10

Let L be a right ideal of $N(S, \Delta)$ such that $L \nsubseteq A(\Delta)$ and L be semi large. Then L is a minimal right ideal of $N(S, \Delta)$ iff L = A(G - C) for some S-equivalence class C on Δ

The proof follows from the lemmas 3.5 and 3.9.

REFERENCES

- [1] D.Ramakotaiah and G.KoteswaraRao., A topological formulation of the density theorem for 0-primitive near-rings. Proc, Roy Irish Acad. (14) 78A
- [2] D.Ramakotaiah and G.KoteswaraRao., 0-primitive near-ring of transformations. Proc, Roy Irish Acad.
- [3] D.Ramakotaiah and PrabhakaraRao., Loop-half-groupoid near-rings. Arch.Math. 47 (1986), 401-407.
- [4] D.Ramakotaiah and Santa Kumari., Onlopp near-rings, Bull. Austrel .Math. .soc., 19 (1978), 417-435
- [5] Bruck R H., A survey of binary systems. Berlin-Heidelberg, New-York 1966

